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Direct numerical simulation (DNS) is performed to investigate the fully developed
turbulence in a straight square annular duct. The mean flow field and the
turbulent statistics are compared with existing experiments and numerical results.
The comparisons and the analysis of the DNS data led to the discovery of the
turbulent boundary layers of concave and convex 90◦ corners, a corner flow similarity
and the scaling characteristics of corner turbulence. Analysis of the mean streamwise
velocity near the concave and convex 90◦ corners resulted in establishing the ‘law-
of-the-corner’ formulations. Comparing these formulations with the ‘law-of-the-wall’
relation, both damping and enhancing mechanisms analytically represented by the
van Driest damping function, and the enhancement function were revealed for the
concave and convex corner turbulence. The investigation captures the distinctive
turbulence-driven secondary flows for both convex and concave 90◦ corners, and
a corner flow similarity rule is discovered, which is associated with the pattern of
these secondary flows. A turbulence energy spectrum analysis provides the distinctive
features of the fully developed turbulence in the wall and corner regions. The validity
of the turbulence eddy viscosity concept is evaluated based on these turbulence energy
spectra. The turbulence-driven secondary-flow generation mechanisms are investigated
by analysing the anisotropy of the Reynolds stresses.

1. Introduction
Turbulent flows in pipes or channels (internal flows) and the turbulent boundary

layer on a flat plate or an airfoil (external flows) have been intensively investigated
over the last century, ever since Reynolds (1883) first found turbulent flow in a circular
pipe and Prandtl (1904) first put forward the boundary-layer theory for flows past flat
plates and circular cylinders. However, the investigations of turbulence in the vicinity
of a streamwise corner are relatively scarce because it was difficult to make any
flow simplifications in early analytical methods, and modern numerical simulation
technologies (both hardware and software) were not powerful and advanced enough
to directly attack these problems. The CPU speed and the RAM memory size
were the main limitations on the hardware side, while the large eddy simulation
(LES)/direct numerical simulation (DNS) solution techniques, particularly the fast
Poisson solver technique (see Wesseling 2001) were the major constraints on the
software side. The earliest attempt to address the turbulence near streamwise corners
can be dated back to Prandtl (1926) in which the origins of the flow perpendicular to
the streamwise direction in a generic duct were identified as pressure-driven secondary
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flows and turbulence-driven secondary flows (TDSFs). As elaborated in Bradshaw
(1987), two distinct mechanisms were found responsible for generating secondary
flows: skew-induced vortex generation by quasi-inviscid deflections of the mean
vorticity and stress-induced vortex generation by anisotropy and inhomogeneous
turbulence (Reynolds) stresses. The stress-induced mechanism produces a TDSF in
a generic straight duct, well-known as Prandtl’s second kind of secondary flow.
Nikuradse (1930) first experimentally investigated the fully developed turbulence
inside a straight square duct and observed a TDSF as a distinctive counter-rotating
vortex pair symmetrically located around the bisector of the concave 90◦ corner.

Numerical simulations have been applied to the turbulent flow in a square
duct over the last three decades. Earlier Reynolds-averaged Navier–Stokes (RANS)
methods with conventional closure models based on isotropy assumptions, such as
the conventional k − ε and k − ω models, failed to predict any TDSF. Launder &
Ying (1973) and Speziale (1987) developed an algebraic stress model and a nonlinear
k − ε model, respectively, to address the anisotropy in the Reynolds stresses and
were successful in qualitatively capturing the TDSF when applied to a square duct.
Demuren & Rodi (1984) provided a comprehensive review of the progress of capturing
the TDSF, using experiments and RANS simulations in that period of time.

The progress of computer technology in the 1990s made it possible to perform LES
and DNS for simple geometry flows, such as channel flows and square duct flows.
LES of square duct flows at this period of time can be found in Madabhushi &
Vanka (1991), Kajishima & Miyake (1992) and Breuer & Rodi (1994). Examples of
DNS of turbulence in a square duct include Gavrilakis (1992) and Huser & Biringen
(1993). These results were compared with the results of a variety of experiments,
such as Niederschulte (1989), Nishino & Kasagi (1989), Kreplin & Eckelmann (1979),
Alfredsson et al. (1988) and Cheesewright, McGrath & Petty (1990). Reasonable
agreements were obtained for the mean flow and turbulence statistics.

As computing hardware technologies, particularly RAM size and CPU speed,
advanced to the point at which it permitted LES or DNS to attack turbulence at
moderately high Reynolds numbers for medium-complexity flow geometries, Xu &
Pollard (2001) first investigated the turbulence in a square annular duct (see figure 1)
using LES. The simulation was validated by comparing the results with the DNSs from
Gavrilakis (1992) and Huser & Biringen (1993) and the universal ‘law-of-the-wall’
in von Karman (1930). Important discoveries of this LES research included (1) the
prediction of the pattern of the TDSF near the convex 90◦ corner and (2) the extension
of the boundary-layer concept and analysis to the streamwise corner flows. The stream-
wise velocity along corner bisector was plotted on a logarithmic scale to quantitatively
study the effects of the TDSF of a corner boundary layer. The preliminary ‘law-of-
the-corner’ formulations for the concave and convex 90◦ corners were derived. The
grid resolution and density near the convex 90◦ corner was found insufficient.

To advance the LES research in Xu & Pollard (2001), a DNS is conducted to
further resolve the turbulence in a square annular duct, particularly the turbulent
boundary layer of the concave and convex 90◦ corners. The Navier–Stokes (N-S)
solution method in the current study is based on the flexible-cycle additive-correction
multigrid (FCAC-MG) technique in Xu, Yuan & Khalid (2005). The development of
a high-performance Poisson solver and the discovery of the solvability condition for
the Poisson equation with periodic velocity boundary conditions made it possible to
drive the residual of the discretized equations down to the computer round-off error,
which guarantees that a strong conservation of the mass and momentum be completely
satisfied. The TDSF (Prandtl’s second kind) is accurately captured for the concave and
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Figure 2. Sampling points on the cross-section of the square annular duct in which the TES
were calculated.

convex 90◦ corners. The turbulence energy spectra (TES) were obtained on a number
of sampling points (see figure 2) and were benchmarked by the Kolmogorov (1962)
law. Compared with the previous LES, the current DNS yields better agreements
with the ‘law-of-the-wall’ relationship and the other DNS results. ‘Law-of-the-corner’
formulations are derived along the corner bisector for both concave and convex
90◦ corners. These formulations are found closely dependent on the patterns of the
TDSF, and the rules are laid out to determine the corner formulations for other generic
concave or convex corners. A flow similarity is discovered for the concave 90◦ corner
by comparing the data with the DNS from Gavrilakis (1992) and the experiment
from Cheesewright et al. (1990). The TES analysis reveals some distinctive features
of turbulence anisotropic motions in near-wall, near-corner and homogeneous flow
regimes, which leads to the re-evaluation of the validity of the conventional turbulence
eddy viscosity as proposed by Kolmogorov (1942). Turbulence statistics (Reynolds
stresses) are obtained, and their anisotropy properties are directly interrogated to
better understand the origins of the TDSF.
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2. Physical model and computations
2.1. Governing equations

Following the same problem-scaling procedure as in Xu & Pollard (2001), the
governing equations in the current DNS are the incompressible unsteady N-S
equations, mathematically representing the conservation laws of mass and momentum:

∂ui

∂xi

= 0 (2.1)

∂ui

∂t
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where the indices i, j, k = 1, 2, 3 refer to the x, y and z directions; x is the streamwise
direction, and y and z are the transverse directions; 2δ1i represents streamwise mean
pressure gradient.

For reference, these abbreviations are used in the following figure legends: EXP
experiment; SQD square duct; AND annular duct; RTC rectangular channel; PLC
plane channel; WBS wall bisector; CBS corner bisector; CCC concave 90◦ corner;
CVC convex 90◦ corner; INW inner wall (of the inner duct); OTW outer wall (of the
outer duct).

2.2. Simulation set-up

In the cross-streamwise directions, the grid density (number of grid points) was
increased by a factor of two in each direction compared with the LES grid in Xu &
Pollard (2001). Based on the analysis of the streamwise velocity near the wall and
corners (see figure 16a, b in Xu & Pollard 2001) the grid resolutions, measured by
the y+ = yuτ/ν or d+

n = dnuτ/ν of the first point away from the wall or corner,
and the grid densities in the boundary layers of the inner and outer walls were reset
and redistributed to suit the need for better resolving the flow. As shown in Xu &
Pollard (2001), the streamwise velocity was under-resolved near the convex corner;
the d+

n value must be well below one to resolve the convex-corner inner boundary
layer. Therefore, the DNS grid resolution was increased significantly in the region by
reducing the minimum y+ or d+

n value from 1.259 in the LES to 0.195 in the DNS.
The grid density near the inner wall and convex corner was increased from 14 points
in the LES to 39 in the DNS. The strong dampening effect of a concave corner on
the streamwise velocity (see Xu & Pollard 2001) produced a thicker concave-corner
boundary layer than the one on a flat plate. Therefore, the grid resolution near the
outer wall and concave corner was slightly changed from y+ = 1.294 in the LES to
y+ = 0.724 in the DNS and the grid density near the concave 90◦ corner was slightly
increased from 20 points in the LES to 27 in the DNS.

In the streamwise direction, the grids were uniform, and the grid density was
almost doubled from 130 in the LES to 256 in the DNS. According to Huser &
Biringen (1993), the non-dimensional length of the square duct was set at 2π, using
the hydraulic diameter as the characteristic length, which was sufficient to resolve
the most anisotropic turbulence eddies near the concave corner. Since the anisotropy
of turbulence eddy near a convex 90◦ corner was not stronger than that near a
concave 90◦ corner, an equivalent length of 4π, with half of the hydraulic diameter
of the square annular duct being the characteristic length, was selected, giving a grid
resolution of �x+ = 9.973 in the streamwise direction. Two groups of sampling points
in figure 2, Group I along the wall bisector and Group II along the corner bisector,
were placed on the cross-section plane in which the TES were calculated.
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Run Grid Ttot �t �y+
i , �y+

o �x+ Reτ Reb Domain

DNS 256 × 258 × 258 9 1.0 × 10−4 0.195, 0.724 9.973 200 3058 4π × 4 × 4
LES 130 × 130 × 130 10 2.5 × 10−4 1.259, 1.294 39.58 200 3349 8π × 4 × 4

Table 1. Computational parameters for the LES and DNS runs.

The initial conditions were generated by interpolating an instantaneous LES
solution in Xu & Pollard (2001) onto the DNS grid. Because of the increase in the
grid density and resolution, the non-dimensional time step in the DNS was reduced
from 2.5 × 10−4 to 1.0 × 10−4 to satisfy the Courant–Friedrich–Levy condition (CFL)
number restriction: CFL < 0.5. The simulation was performed at a Reynolds number
of 200 based on the mean frictional velocity uτ and half the hydraulic diameter
of the square annular duct (equivalent to h in figure 1). One large eddy turnover
time (LETOT = h/uτ ), or 10 000 time steps, was used to get rid of the transition
effects from the LES to the DNS, and then the turbulence statistics were accumulated
over nine LETOTs, or 90 000 time steps. Table 1 summarizes the key computational
parameters compared with the ones in the LES study. The total sampling time Ttot

and the time step �t are normalized by LETOT. The Reynolds numbers, Reτ and
Reb, are defined as Reτ = uτh/ν and Reb = ubh/ν, respectively.

2.3. Numerical techniques

The N-S equations were spatially discretized using a second-order finite-volume
method on a staggered grid. The temporal discretization was effected through the
second-order Adams–Bashforth scheme for the convection terms and the second-order
Adams–Moulton scheme for the diffusion terms. The fractional step method in Kim
& Moin (1985) was applied to obtain a time-dependent pressure and divergence-free
velocity. The solution techniques for the discretized N-S equations was based on the
conventional and modified tri-diagonal matrix algorithms (TDMAs) coupled with an
FCAC-MG technique in Xu et al. (2005).

3. Analysis of the DNS results
Code validation and a detailed analysis of the LES results were reported in Xu &

Pollard (2001). The current DNS aims to completely resolve the turbulence inside a
square annular duct and further reveal new features of turbulence physics near the
corner regions. The statistics, including the mean flow field, the Reynolds stresses and
the TES, were obtained by averaging the accumulations over a period of nine LETOTs.
The quality of these statistics was further improved via averaging the accumulations
in the homogeneous direction and conducting the quadrant and triangle averagings
due to the geometrical symmetry properties, as suggested by Gavrilakis (1992) and
Huser & Biringen (1993).

3.1. Mean flow field

3.1.1. Overview of the mean flow field

The current DNS predicted a bulk mean streamwise velocity of U+
b = 15.28, which

gave a friction factor of f = 8u2
τ /U

2
b = 0.034, close to the one for a rectangular duct

(0.030) in Hartnett, Koh & McComas (1962). The slight increase is attributed to the
convex corner that causes a sharp increase in the local wall shear stress (see § 3.1.3).
The DNSs from Gavrilakis (1992) and Huser & Biringen (1993) yielded friction
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Figure 3. Mean streamwise velocity contours in the lower-left quadrant of the square
annular duct.

factors of f = 0.037 and f = 0.027, respectively. The maximum mean streamwise
velocity was U+

0 = 18.69 located at (y, z) = (1.349, 0.575) on the cross-streamwise
plane. Therefore, the ratio of the maximum to bulk velocity was U0/Ub = 1.22.
Figures 3 and 4(a) present the mean streamwise velocity contours and the mean
TDSF vectors, respectively, for the lower-left quadrant of the square annular duct.
Figure 4(b) details the mean TDSF near the convex corner. The contours near the
wall bisector (Region I) are fairly flat, indicating that the flow is almost parallel to
the inner and outer walls, close to the scenario of a channel flow. The contours in
figure 3 clearly identify a bulge away from the convex corner of the inner square duct
(Region II) and a bulge towards the concave corner of the outer square duct (Region
III). Following the argument in Nikuradse (1930), these bulges imply the existence
of TDSFs pointing away from the convex corner and directed towards the concave
corner. The vector plots of the mean TDSF in figure 4(a, b) confirm the conjecture by
exhibiting the counter-rotating vortex pairs, located symmetrically around both the
convex and concave corners. The vortex pair near the concave corner of the outer
square duct is reminiscent of the vortex structure in a square duct, while the TDSF
vortex structure near the convex corner is comparable to the ones in the vicinity of a
riblet peak predicted by Choi, Moin & Kim (1993).

The streamwise mean velocity U+ scaled by the mean frictional velocity uτ is
compared to the square duct DNS and the previous LES for a square annular duct
(see figure 5a, b). The comparisons are provided along the wall bisector (Region I)
and the corner bisector (Regions II and III), with the horizontal axes normalized by
the wall bisector distance and the diagonal distance, respectively. The obvious grid
dependence of LES solution manifests the necessity to conduct a DNS to eliminate
the coarse-grid diffusion effect that tends to overpredict U+.
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Figure 5. Mean streamwise velocity along the (a) wall bisector (Region I) and (b) corner
bisector (Region II and III).

Another important observation in figure 5 (a, b) is that the velocity profiles exhibited
high gradients near the wall and corners and flattened quickly away from these regions.
This suggests that the boundary-layer concept and analysis are valid not only in the
near-wall region but can also be extended to the near-corner regions and that the
corner bisector is a characteristic line for the analysis. This idea was implicitly used in
the LES of Xu & Pollard (2001). The analysis of the current DNS led to the derivation
of the ‘law-of-the-corner’ formulations that provide quantitative descriptions of the
TDSF effects on the bulge of the streamwise-velocity contours in the corner vicinity,
supplementing the qualitative observations in Nikuradse (1930).

3.1.2. Analysis of the streamwise velocity in the near-wall and near-corner regions

The near-wall behaviour of the mean streamwise velocity U+ was validated by the
‘law-of-the-wall’ as shown in figure 6(a, b). The comparison also included the LES
and DNS at both lower and higher Reynolds numbers. In the inner region (y+ � 10),
the U+ near the inner and outer walls agreed well with each other for both the
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Figure 6. Mean streamwise velocity behaviour in the near-wall region (Region I) (a) scaled
by the mean frictional velocity and (b) scaled by the local frictional velocity.

LES and DNS and were in good accord with the linear-diffusion relationship. In the
logarithmic region (20 � y+ � 100), the current DNS agreed better with the square
duct DNS compared to the previous LES, particularly in the inner-wall region. The
improvement confirmed the necessity of increasing the grid density and resolution in
the inner-wall region. The over-prediction of U+ near the inner wall in the previous
LES was not caused by the high velocity gradient. Instead, the overshoot was the
result of a grid-diffusion effect due to the insufficiency of the grid resolution and
discretization. The slight discrepancies between the data near the inner and outer walls
in figure 6(a) are attributed to the velocity-scale ambiguity issue for a wall-bounded
turbulence (see Gavrilakis 1992). Evidently, the local frictional velocity u∗ ought to be
the velocity scale for the viscous sublayer, and Gavrilakis (1992) argued that the local
scaling should be valid for some distance beyond the viscous sublayer. Based on this
argument, U+ was rescaled by the local value. The mean wall shear stress analysis
(see § 3.1.3) gives the shear stress ratios (τw/τ̄w) along the wall bisector at 1.0663 for
the inner wall and 0.9766 for the outer wall. The rescaled U+, using the relationship
u∗/uτ =

√
τw/τ̄w , is presented in figure 6(b). The two curves for the inner and outer

walls overlapped almost perfectly after the rescaling and exhibited a better agreement
with the ‘law-of-the-wall’. This suggests that the local frictional velocity should,
indeed, be used as the velocity scale. The current DNS followed the relationship
U+ = 3.2 ln(y+) + 3.9 in 10 � y+ � 100, which is different from the conventional
‘law-of-the-wall’ for a flat-plate, i.e. U+ = 2.5 ln(y+) + 5. From Gavrilakis (1992), the
discrepancy can be attributed to the low Reynolds number effect and the influence of
the secondary flow (see the secondary flow velocity magnitude along the wall bisector
in figure 9), which causes a distortion of streamwise velocity contours along the wall
bisector in figure 3. However, the rescaling correction is valid only for the region in
which the flow is essentially parallel to the wall and the local mean wall shear stress
ratio is close to unity. As demonstrated in the following section, the strong TDSFs
along corner bisector (see figure 9) caused a significant distortion of the streamwise
velocity contours near the corners (see figure 3) and drastically altered the nature
of the corner boundary layer. Therefore, an alternative way to characterize the
corner turbulence must be developed to account for the ‘damping’ and ‘enhancing’
mechanisms identified for the concave and convex corners, respectively.
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Figure 7. Mean streamwise velocity (a) near concave corner (Region II) and (b) near
convex corner (Region III).

Following the approach proposed by von Karman (1930) for a flat-plate turbulent
boundary layer, the streamwise velocity in the vicinity of the two corners along
the corner bisector are plotted on the logarithmic scales in figure 7(a, b). These
distributions were compared with the traditional ‘law-of-the-wall’, the two DNSs
along the concave-corner bisector of a square duct and the existing LES for the
square annular duct.

The current DNS near the concave corner presented a slight improvement compared
to the previous LES, particularly in the logarithmic region, and were in a better
agreement with the other two DNSs of a square duct. Therefore, the curve-fitted
formulation for the concave corner remained the same as that obtained in the
previous LES, i.e. in the corner boundary-layer inner region 0 � d+

n � 20 : U+(d+
n ) =

d+
n (1 − e−d+

n /25) and in the turbulent corner boundary-layer outer region 30 � d+
n �

100 : U+(d+
n ) = 2.5 ln(d+

n ) + 6.5, where d+
n is the normalized corner bisector distance

shown in figure 5(b), equivalent to y+ along the wall bisector. The transition point
between the inner and outer layers for the concave corner occurred at d+

n = 23.58,

where U+ is equal to 14.40. A factor of
√

2 must be applied to convert d+
n to the

actual length d+in the corner bisector direction, which yields a relation of U+(d+) =
2.5 ln(d+) + 5.6 in the concave-corner outer region. The consistency with the relation
for smooth flat-plate outer layer suggests that the concave corner does not impose
any roughness effect on the turbulent outer layer. Since the local mean frictional
velocity u∗ is zero near the concave corner (see figure 10), the mean frictional velocity
uτ becomes the only appropriate velocity scale in this region, and a damping factor
(1 − e−d+

n /25) proves to be appropriate to account for the damping characteristics of
the concave 90◦ corner boundary layer.

Now the attention is switched to the convex corner. Figure 7(b) shows a significant
improvement in the current DNS compared to the LES in Xu & Pollard (2001).
The LES grid was sparse near the convex 90◦ corner, and more grid points were
required well into the region of d+

n � 1.0 to resolve the convex-corner boundary
layer. The first grid point near the convex corner was set at d+

n = 0.195, and five
grid points were placed in d+

n � 1.0. The U+(d+
n ) dependence near the convex 90◦

corner was curve-fitted, as U+ = d+
n (1 + e−d+

n /5)1.8 in the inner layer of 0 � d+
n � 10.
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The outer-layer relationship U+ = 2.5 ln(d+
n ) + 8.0 was in good accord with the

computation in 20 � d+
n � 100. If d+

n is converted to the actual distance d+, the
outer-layer formulation is rewritten as U+ = 2.5 ln(d+) + 7.1. The constant (=7.1)
is significantly higher than the conventional value (5.0 to 5.5) for a smooth surface.
This observation concludes that the behaviour of a convex corner can be interpreted
as or equivalent to a high wall-roughness effect. Near the convex corner, the two
formulations yielded a transition point from the inner layer to the outer layer at
d+

n = 12.35 with U+ equal to 14.29. The transition from the inner to outer layer
occurred almost at the same U+ value (around 14.3) for both the concave and
convex 90◦ corners; however, the distance away from the corner tip was doubled
from d+

n = 12.35 for the convex 90◦ corner to d+
n = 23.58 for the concave 90◦ corner,

whereas the transition point for flat plate is well known at y+ = U+ = 11.6. Although
the local mean frictional velocity u∗ is not zero for a convex corner, the extremely
thin boundary layer shown in figure 7(b) suggests that u∗, as a velocity scale, is valid
only within a very small d∗

n range. The curve normalized by u∗ agrees with the viscous
inner layer relation U ∗ = d∗

n only within a small distance of d∗
n � 2.0. Therefore, an

alternative way to characterize the convex-corner boundary layer must be developed
to account for the enhancing mechanism, as opposed to the damping mechanism
for a concave 90◦ corner. Figure 7(b) proves that the enhancing factor (1 + e−d+

n /5)1.8

produces a fairly accurate velocity profile within a distance of 0 � d+
n � 10.

Due to the prominent TDSF, the nature of the corner boundary layer significantly
differs from that of the flat-plate boundary layer. Towards this end, two distinctive
mechanisms, namely damping and enhancing effects, are identified for the concave
and convex corner turbulence, respectively. The concave and convex 90◦ corners
impose a damping factor of 1 − e−d+

n /25 and an enhancing factor of (1 + e−d+
n /5)1.8,

respectively, onto the turbulent sublayer diffusion in the near-corner regions. Figure 8
highlights the curves of the ‘law-of-the-wall’ and ‘law-of-the-corner’ in one graph.
The ‘law-of-the-wall’ is, in fact, a neutral curve that represents the situation with
very small (or ideally zero) secondary flow. Figure 9 compares the secondary velocity
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Figure 9. Comparison of the mean secondary flow velocity along the corner bisector and
wall bisector.

magnitudes along the corner and wall bisectors. The TDSF along the corner bisector
is at least a half order of magnitude larger than that along the wall bisector. When the
turbulence is subjected to a TDSF pointing towards the corner (concave corner), the
neutral velocity profile is pushed downward (see figure 7a) by the TDSF. Therefore
a damping factor should apply to adjust the neutral curve to the one affected by the
TDSF. For turbulence with a TDSF pointing away from the corner (convex corner),
the neutral velocity profile is lifted upward (see figure 7b) by the TDSF, and an
enhancing factor is required to correct the neutral curve to the one enhanced by the
TDSF. The damping function first presented in van Driest (1956) was in a general
form of 1−e−y/A, with A being the characteristic length at which an eddy is effectively
dampened. In contrast to a damping effect, an enhancing function is developed here
in a general form of 1 + e−y/A, where A is the characteristic length within which the
enhancement is effective. Curve fitting the DNS near the concave 90◦ corner gave an
optimal value of A = 25, coinciding with the value proposed by van Driest (1956) for
the flat-plate damping effect. However, the curve fitting near the convex 90◦ corner
yielded an optimal value of A = 5, which is justified by the much thinner boundary
layer near the convex 90◦ corner.

A question that naturally arises is what determines the power of the enhancing factor
(=1.8), and what is its physical implication? The answer is inspired by the statement in
Gavrilakis (1992): “[O]f the three velocity scales available, namely U0, Ub and uτ , the
frictional velocity is usually deemed the most suitable choice for bounded turbulent
flows since its value can be directly related to the turbulent stress field. The variation
of the local mean wall stress, and therefore the local friction velocity, over the duct
boundaries introduces an ambiguity as to which scale should be used. Within the
viscous sublayer the local value is the correct choice.” Since the velocity scale in the
formulation near the convex corner, U+ = d+

n (1 + e−d+
n /5)1.8, is based on the mean fric-

tional velocity uτ , the power of the enhancement factor should carry the information
of the local friction velocity and must be a non-dimensional parameter. Therefore,
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Figure 10. Wall shear stress ratio along the inner and outer walls of the square annular duct.

a rational guess is that the power is the ratio of the local and the mean friction
velocities, u∗/uτ . The following analysis of the wall shear stress ratio provides a strong
verification of this conjecture, leading to a more general form of the velocity profile

near a convex corner, U+ = d+
n

(
1 + e−d+

n /A
)u∗/uτ

. The universality of the formulation
must be subject to further validation for more convex-corner flow configurations.

3.1.3. Analysis of the wall shear stress

The ensemble-averaged wall shear stress ratio, calculated by τw/τ̄w =
(
∂U+/∂y+

)
w
,

is plotted in figure 10 as a function of the distance along the side walls of both the
square and annular ducts. The τw/τ̄w in the concave-corner region (y � 0.25) of the
annular duct is similar and comparable to those of a square duct due to the fact that
the flow behaviour is essentially dominated by the concave 90◦ corner. The shear stress
ratio at the concave corner tip was zero and gradually increased to unity over the
region of 0 � y � 0.25. By taking the derivative of velocity near the concave corner,
U+(d+

n ) = d+
n (1 − e−d+

n /25), τw/τ̄w = (∂U+/∂d+
n )w approaches zero because of the effect

of the van Driest damping function. The convex 90◦ corner caused a sharp increase in
τw/τ̄w within a small distance of 1.0 � y � 1.06. The peak of τw/τ̄w from the present
DNS was 3.261, whereas the LES in Xu & Pollard (2001) significantly under-predicted
this peak (= 1.62) due to the poor grid resolution. By taking the derivative of velocity
near the convex corner, U+ = d+

n (1 + e−d+
n /5)1.8, τw/τ̄w = (∂U+/∂d+

n )w at d+
n = 0 is

equal to 3.48. The major contribution is from the enhancing factor (1 + e−d+
n /5)1.8.

Therefore, the three types of turbulent boundary layers can be identified from their
distinct characteristics in terms of the shear stress ratio. A flat-plate boundary layer
is characterized by a shear stress ratio near unity due to the inner-wall relationship
U+(y+) = y+. A concave 90◦ corner boundary layer has a zero shear stress ratio
due to the damping effect of (1 − e−d+

n /25). A convex 90◦ corner boundary layer has
a shear stress ratio of 3.261 based on the current grid resolution, which yields a
local friction velocity ratio of u∗/uτ =

√
τw/τ̄w = 1.806. The value coincides with the

power of the enhancing factor, which confirms the conjecture in § 3.1.2 and leads to a
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Benchmark z1 = 0.1000 z1 = 0.1600 z1 = 0.3000 z1 = 0.5000 z1 = 0.7000
Present DNS z2 = 0.0815 z2 = 0.1304 z2 = 0.2445 z2 = 0.4075 z2 = 0.5705

Table 2. z stations at which the current DNS results and benchmark data were compared.

more general and universal formulation for the velocity profile near a convex corner,
U+ = d+

n (1 + e−d+
n /A)u

∗/uτ .

3.1.4. Flow similarity rule in concave and convex 90◦ corner regions

The DNS of Gavrilakis (1992) and the experiment from Cheesewright et al. (1990)
were used to quantitatively validate the current DNS. As shown in figure 4(a), the
TDSF pattern was similar for both the square and annular ducts near the concave
corner, which suggests that the flow features, including both the streamwise velocity
and TDSF, ought to be at least qualitatively comparable. The flow similarity near a
corner is aimed at establishing a rule for a quantitative comparison. The key step
is to identify the trimming parameters that make the flow near a corner universally
comparable. Since the argument is based on the similarity of the TDSF near a
concave 90◦ corner, the locations of the mean TDSF vortex core ought to be the key
parameters for trimming the flows near the concave corners. The vortex core from
Gavrilakis (1992) was located at (y1, z1) = (0.206,0.500), whereas the current DNS
gave the vortex core at (y2, z2) = (0.164,0.407). Therefore, the trimming parameters are
defined as y2/y1 = 0.797 in the y direction and z2/z1 = 0.815 in the z direction. Table 2
provides the z stations at which the measurements from Cheesewright et al. (1990)
and the DNS from Gavrilakis (1992) were taken and the corresponding z stations
(z2 = z1 × 0.815) at which the present DNS data were extracted for comparison.

Figure 11(a, b) presents the streamwise velocity (U/U0) and TDSF component in the
z direction (W/U0), respectively, at four z stations near the concave corner, including
the data before and after the correction. After corrected by the trimming parameters
defined based on the location of the vortex core (y2 = y1 × 0.797), the present DNSs
were compared with the data from Cheesewright et al. (1990) and Gavrilakis (1992).
The corrected data, roughly in the region (y, z) = (0–0.5, 0–0.5), were found in
much better quantitative agreement with the benchmarks than the uncorrected data,
which manifests a strong support for the existence of the flow similarity and the
correctness of the trimming parameters selection. Outside the concave corner region,
i.e. (y, z) = (� 0.6, � 0.6), the flow field was affected by the existence of the inner side
walls and the convex corner. Therefore, some deviations were apparent. This analysis
indicated that the turbulence was strongly flow-configuration dependent, and the flow
features were very local. For example the flow features for a concave 90◦ corner flow
were similar, regardless of whether the domain was a square annular duct or a square
duct, provided the mean flow near the corner was symmetric. Therefore, it is reasonable
to believe that the ‘law-of-the-corner’ shown in figure 8 possesses some degree of
universality under the symmetric mean flow conditions. Based on the same argument,
the flow around a convex corner also possesses a similarity property. Again, the vortex
core location near the convex corner ought to be the key parameter for trimming the
flows for comparison. The location of the vortex core near the convex corner was
(y, z) = (0.781,1.069), and the region of dominance for the convex corner vortex was
roughly within the range of (y, z) = (0.7–1.3,0.7–1.3). The information is provided
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Figure 11. For caption see next page.

for future comparison and validation with other convex-corner flow configurations,
such as the TDSF structures near a riblet peak reported by Choi et al. (1993).

3.2. Turbulence statistics

3.2.1. Turbulence energy spectra (TES)

Two groups of sampling points, shown in figure 2, were selected to study the TES
at different scales of motion: Group I along the wall bisector and Group II along
the corner bisector. Since the streamwise grid number was 256, a minimum number
of four grid points were needed to represent one sinusoidal cycle. The limiting cutoff
wave number is roughly estimated to be between 60 and 70, and the signals beyond
this range can be considered as noise. Figure 12(a, b) presents the TES at these
sampling points. These spectra were qualitatively checked by the Kolmogorov −5/3
law (see Kolmogorov 1962), which characteristically divided the entire spectrum into
regimes: the large scales, the inertial range and the small or Kolmogorov scales.
The spectra at the limiting cutoff wave numbers had larger negative slopes than the
−5/3 law, which indicates that the grid resolution in the x direction was sufficient to
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Figure 11. Comparisons of the (a) streamwise velocity profiles and (b) mean secondary
velocity near the concave corner in the z direction.

resolve the turbulence motions down to Kolmogorov scales. However, the conclusion
must be made with a caution that the larger negative slope might be due to the
under-resolution of the current grid for those high wavenumber motions, and a grid
refinement study is warranted in the streamwise direction to resolve the issue.

The major fundamental postulation in the constitutive equation for a Newtonian
fluid is the isotropy assumption (see Wang 1982 and Warsi 1993), which warrants the
stress–strain coefficient tensor Eijkm reducing to two independent scalar invariants
(μ, λ) known as the first (molecular) and second (volume) coefficients of viscosity.
To study turbulence motions and their effects on the mean flow, Kolmogorov
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Figure 12. (a) TES along the wall bisector. (b) TES along the corner bisector.

(1942) proposed a generalized form of Boussinesq’s hypothesis, ρu′
iu

′
j = Aδij +

μT (∂ūi/∂xj + ∂ūj /∂xi), based on an analogy of the motions between fluid particles
and turbulence eddies, resulting in the well-known turbulent eddy viscosity μT .
The isotropy assumption of turbulent eddy motions implicitly contained in the
Boussinesq’s hypothesis is disputable and the DNS data enables a direct interrogation
of the issue. Analyses of the turbulence anisotropy in the square annular duct, as
demonstrated by the TES in figure 12, provide better understandings of the turbulence
features in different flow regimes, such as near-wall, near-corner and homogeneous
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flows, and result in the re-evaluation of the validity of the conventional turbulent
eddy viscosity concept.

The strong anisotropies presented in figure 12 are the dominant features in the entire
flow domain for the large-scale motions with the wavenumbers ranging from 1 to 10.
These anisotropies are highly flow-geometry dependent. Therefore, the conventional
eddy viscosity concept loses its validity for the motion at these scales, which is well
known to cause the failure of RANS methods. As demonstrated in the second parts of
figure 12(a, b), the homogeneous turbulence away from the wall and corner regions is
characterized by strong anisotropy and flow-configuration dependence in large-scale
motions. As the energy cascades down to small-scale motions, these energy spectra
approach an isotropic state in three spatial directions. This observation suggests
the validity of applying the turbulent eddy viscosity assumption in these regions
to represent the turbulence motions at sufficiently small scales. The current results
indicate that these small scales are roughly the motions beyond a wavenumber of 30,
and wavenumbers between 10 and 30 correspond to the transition (or inertia) regime
characterized by the −5/3 slope. These characteristics of turbulence are consistent
with the philosophy of LES. However, in the near-wall and near-corner regions, the
anisotropy of the turbulence motions persists, even at small scales, shown in the first
and third parts of figure 12(a, b). Again, the anisotropy is strongly flow-configuration
and flow-region dependent. For instance the flow is always isotropic in the y and
z directions along the corner bisector because of the symmetric geometry but very
anisotropic compared in the streamwise direction, as shown in figure 12(b). This
observation implies that the conventional (scalar) eddy viscosity μT is not sufficient
to represent the anisotropic turbulence motions at small scales in some specific regions,
such as the vicinities of walls and corners. Therefore, more accurate RANS closure
model or LES subgrid scale models are recommended to be developed in future by
considering the turbulence eddy viscosity as a tensor μT ijkm rather than a scalar in

Boussinesq’s hypothesis, i.e. ρu′
iu

′
j = Aδij + μT ijkm(∂ūk/∂xm + ∂ūm/∂xk), where the

indices i, j, k, m take the values of 1, 2, 3, that represent three spatial dimensions,
and the repeated indices k, m imply the Einstein summation. DNS database should
be utilized to derive appropriate simplifications for the eddy viscosity tensor and
to calibrate each tensor component in μT ijkm so that the anisotropy issue can be
sufficiently addressed.

3.2.2. Turbulence Reynolds stresses

The Reynolds stresses, u′u′, u′v′, v′v′ and v′w′, were accumulated and averaged over
a period of LETOTs = 9 (from 2 to 10 LETOT). Figure 13 shows the distributions
over the lower-left quadrant of the square annular duct, using contour plots. The
Reynolds stress distributions for the other quadrants can easily be obtained through a
symmetrical mirroring or reflecting transformation with respect to the corresponding
axes or origin. The four stress components in figure 13 clearly indicate that the
Reynolds stress distributions are highly non-uniform and strongly flow geometry
dependent, particularly near the regions of walls, concave and convex corners.

Figure 14(a–b) presents the streamwise and cross-streamwise turbulence intensities,
u′

r.m.s., v
′
r.m.s. and w′

r.m.s., scaled by uτ , along the lines of z = 1.00 and 1.98. These
data were compared with previous LES from Xu & Pollard (2001) and the DNS
from Gavrilakis (1992) and Huser & Biringen (1993). A tangible amount of grid
dependence was found for the streamwise turbulence intensities. Compared with the
current DNS, the previous LES generally over-predicted the turbulence intensities
of u′

r.m.s., which is consistent with the observation from Huser & Biringen (1993),
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Figure 13. Reynolds stress distributions scaled by uτ : (a) u′u′; (b) u′v′; (c) v′v′; (d ) v′w′.

‘[I]n the present results, the u′
r.m.s. decrease with increasing grid resolution’, and the

comment made by Rai & Moin (1991), ‘[T]he upwind-biased scheme has a tendency
to overpredict the maximum value in u′

r.m.s. when the computation is under-resolved’.
The current DNS predictions were closer to the DNS from Gavrilakis (1992) in
terms of both the peak and valley values of the u′

r.m.s. along z = 1.00 and 1.98. The
distributions of both the v′

r.m.s. and w′
r.m.s. were by no means close to symmetry along

the wall bisector. This observation indicates that the TDSF induced by the convex
corner imposed a non-negligible effect on the flow near the wall bisector and made
the flow pattern deviate from a conventional channel flow.

Most existing experiments, such as those by Kreplin & Eckelmann (1979),
Niederschulte (1989) and Nishino & Kasagi (1989), were obtained for turbulent flows
in plane channel configurations. The Reynolds stresses from these flows are compared
to the current DNS along the two lines illustrated in figure 14(b), corresponding to
z = 1.00 (along a line parallel to the bottom of the duct and extending from the
convex corner) and 1.98 (along wall bisector). DNS data along the wall bisector of a
square duct from Gavrilakis (1992) and Huser & Biringen (1993) are also included.
Although the flow in the square annular duct is asymmetric along the wall bisector,
as shown in figures 13 and 14, it can still be argued that the Reynolds stress patterns
are not that far away from those of a channel flow due to the effects of the inner and
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Figure 14. Streamwise and cross-streamwise turbulence intensities (a) u′
r.m.s., (b) v′

r.m.s. and
(c) w′

r.m.s. scaled by uτ along z = 1.98 (wall bisector) and z = 1.00.

outer side walls and the symmetry requirement perpendicular to the wall bisector.
However, for the line at z = 1.00 extending from the convex corner, the flow near
the outer wall is expected to be close to channel flow, while some deviations are
anticipated near the convex corner. These comparisons present a qualitative check,
rather than a point-to-point validation, of the flow behaviour, particularly near the
wall and the corner. Since the experiments were all scaled by the local mean frictional
velocity, and the current DNSs were rescaled by u∗ near the convex corner, the
results scaled by uτ are also included for comparison purpose. The concave-corner
region is considered, where the current DNSs, after being corrected by the trimming
parameters (secondary vortex core location) given in § 3.1.4, are compared with the
DNS from Gavrilakis (1992) and the experiment from Cheesewright et al. (1990). The
experiment and Gavrilakis’s DNS are inclusively referred to as the benchmark data.

Plotted in figure 15(a–c) are the turbulence intensities of u′
r.m.s., v

′
r.m.s. and w′

r.m.s.

scaled by u∗ along z = 1.00 and 1.98. These data are compared to the DNSs from
Gavrilakis (1992) and Huser & Biringen (1993) along the wall bisector of a square
duct. The u′

r.m.s. variations shown in figure 15(a) were comparable to the benchmark
data in terms of their peak and valley values near the outer wall. The gradients
of the u′

r.m.s. curves were somewhat different, which is attributed to the Reynolds
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Figure 15. (a) Streamwise turbulence intensity u′
r.m.s. scaled by u∗ (1) near the outer walls along

z = 1.00 and 1.98 and (2) near the inner wall along z = 1.00 and 1.98. (b) Cross-streamwise
turbulence intensity v′

r.m.s. scaled by u∗ (1) near the outer walls along z = 1.00 and 1.98 and (2)
near the inner wall along z = 1.00 and 1.98. (c) Cross-streamwise turbulence intensity w′

r.m.s.

scaled by u∗ (1) near the outer walls along z = 1.00 and 1.98 and (2) near the inner wall along
z = 1.00 and 1.98.
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number difference and the TDSF effects. Near the inner wall, the DNS predictions
along the wall bisector were close to the benchmark data, but significant discrepancies
were found near the convex corner due to the extremely high u∗. The curve scaled
by uτ was in good accord with the benchmark data. Since the ratio of the local
to mean wall shear stresses (τw/τ̄w) is close to unity along the wall bisector for
the channel and square duct flows, the benchmark data are expected not to change
very much if rescaled using uτ . Therefore, the mean frictional velocity uτ is more
appropriately applied as the velocity scale near the convex corner. For the cross-
streamwise turbulence intensities, i.e. v′

r.m.s.and w′
r.m.s., the distribution patterns along

z = 1.00 and 1.98 were similar to the benchmark data near the outer wall (see the
first parts of figure 15b, c); however, the gradients near the outer wall were lower than
the benchmark data. Near the inner wall (see the second parts of figure 15b, c), both
v′

r.m.s. and w′
r.m.s. exhibited high gradients near the convex corner (z = 1.00) and quite

low near-wall gradients along z = 1.98, particularly v′
r.m.s.. The magnitudes of both

v′
r.m.s. and w′

r.m.s. were in better agreement with the benchmark data near the convex
corner if scaled by uτ but significantly lower than the benchmark data if scaled using
u∗. This observation again suggests that the mean frictional velocity uτ ought to be
used as the velocity scale near the convex corner.

The turbulence shear stress u′v′ along z = 1.00 and 1.98, scaled by uτ , are compared
in figure 16(a) to the square duct DNS along the wall bisector. The distributions near
the outer wall were quite similar to each other along z = 1.00 and 1.98; however,
significant differences were found near the inner wall in terms of both gradients and
peak magnitudes. Figure 16(b) shows −u′v′ scaled by u∗ along z = 1.00 and 1.98
near the inner and outer walls, respectively. These data were also compared to the
benchmark data. The distribution patterns near the outer wall, shown in the first part
of figure 16(b), were quite similar to the benchmark data, which is highlighted by a
sharp increase to a peak near wall followed by a linear decrease. These patterns can
be well explained by the mean streamwise momentum equation:

−∂UV

∂y
− ∂UW

∂z︸ ︷︷ ︸
convection

−∂u′v′

∂y
− ∂u′w′

∂y︸ ︷︷ ︸
Reynolds shear stresses

+
∂

∂y

(
ν
∂Ū

∂y

)
+

∂

∂z

(
ν
∂Ū

∂z

)
︸ ︷︷ ︸

molecular diffusion

=
∂P̄

∂x
. (3.1)

The sharp gradients and the −u′v′ peak near the walls are generated due to the
viscous and convective effects as well as the streamwise pressure gradient, and the
viscous and convective terms play important roles within this region. Outside the near-
wall region, the flow is essentially dominated by the balance between the gradient
of −u′v′ and the streamwise pressure gradient, causing the linear decrease of −u′v′.
The shift between the linear decreases along z = 1.00 and 1.98 is caused by the flow
asymmetry induced by the TDSF, as plotted in figures 4(a) and 5(a). The zero mean
streamwise velocity and secondary velocity gradients occur at y = 0.58, as shown in
figures 5(a) and 9, instead of at y = 0.5 for the symmetric square duct or channel flows.
Therefore, the zero −u′v′ point was shifted to y = 0.58 along the wall bisector. For
the inner-wall regions, the −u′v′ along z = 1.98 were lower than the benchmark data.
The −u′v′ along z = 1.00 line were lower than the benchmark data if scaled by u∗ but
higher than the benchmark data if scaled using uτ . The −u′v′ along z = 1.00 and 1.98
agree with each other only within a very short distance from the wall, which confirms
the conclusion regarding the scaling issue of −u′v′ in Gavrilakis (1992): ‘[B]ut beyond
it (near-wall region) the scaling based on u∗ becomes progressively inappropriate’.
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Figure 16. Turbulence shear stress (a) u′v′ scaled by uτ along z = 1.00 and 1.98; (b) −u′v′

scaled by u∗ (1) near the outer wall and (2) near the inner wall; (c) −u′v′ scaled by u′
r.m.s.v

′
r.m.s.

(1) near the outer wall and (2) near the inner wall.

Kim, Moin & Moser (1987) and Gavrilakis (1992) examined the −u′v′ rescaled by
the local u′

r.m.s. and v′
r.m.s.. Figure 16(c) presents the −u′v′/(u′

r.m.s.v
′
r.m.s.) along z = 1.00

and 1.98 near the inner and outer walls. The near-wall maximum was evident in the
current DNS, and due to the Reynolds number effect, the peaks occurred farther
away from the wall compared to the benchmark data. However, the most striking
observation is that the rescaling using the local u′

r.m.s. and v′
r.m.s. produced fairly
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Figure 17. Off-diagonal Reynolds stress distributions: (a) u′v′ scaled by (u′
r.m.s.v
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r.m.s.);

(b1) v′w′ scaled by (v′
r.m.s.w

′
r.m.s.); (b2) v′w′ along the corner bisector.

universal curves in terms of both the distribution patterns and peak values, even for the
region near the convex corner. The ratio between −u′v′ and local u′

r.m.s. and v′
r.m.s. has

a fairly universal distribution patterns and characteristic peak values (around 0.5 for
a flat-plate region and around 0.6 for a convex-corner region), as demonstrated in the
first and second parts of figure 16(c). Encouraged by these findings, the off-diagonal
Reynolds stress (u′v′ and v′w′) in the lower-left quadrant of the square annular duct
were rescaled by the local values of u′

r.m.s.v
′
r.m.s. and v′

r.m.s.w
′
r.m.s., respectively, and the

results are plotted in figure 17(a, b). The u′v′/(u′
r.m.s.v

′
r.m.s.) exhibited a more normalized

distribution than the u′v′ scaled by uτ (see figure 13b) in the sense that the values were
more universally distributed around ±0.5 in the region encompassed by the inner
and outer walls, the wall bisector and the corner bisector lines. This can be clearly
seen in figure 17(a), where these regions are mostly covered by red and blue contours,
even near the convex and concave corners. The most striking difference between the
first part of figure 17(b) and figure 13(d ), is that v′w′ scaled by v′

r.m.s.w
′
r.m.s. yielded

more universal distributions with peak values around unity for both the concave and
convex corners. Whether this conclusion can be universally applied to other corner
turbulence would be an intriguing subject to study. Since v′w′, v′

r.m.s. and w′
r.m.s. are

the key parameters for generating the TDSF (see § 3.2.3) this observation implies the
contributions to TDSF from the shear stress of v′w′ and the normal stresses of v′

r.m.s.

and w′
r.m.s. are roughly equal or at least of the same order of magnitude. This issue

has long been a debate as seen in Brundrett & Baines (1964), and a quantitative
analysis of the issue will be provided in § 3.2.3. The corner bisector was again selected



46 H. Xu

y

0 0.05 0.10 0.15 0.20

0.2

0.4

0.6

0.8

1.0

(a)

0 0.05 0.10 0.15 0.20

0.2

0.4

0.6

0.8

1.0

y

0 0.05 0.10 0.15 0.20

0.2

0.4

0.6

0.8

1.0

0 0.05 0.10 0.15 0.20

0.2

0.4

0.6

0.8

1.0

Present DNS, AND near CCC
EXP,Cheesewright et al. (1990) corrected
EXP, Cheesewright et al. (1990) uncorrected
DNS, SQD, Gavrilakis (1992) corrected
DNS, SQD, Gavrilakis (1992) uncorrected

z2 = 0.0815

z1 = 0.1000

z2 = 0.2445

z1 = 0.3000

u′r.m.s./U0 u′r.m.s./U0

z2 = 0.4075
z1 = 0.5000

z2 = 0.5705
z1 = 0.7000

Figure 18. For legend see next page.

as the characteristic line to study the detailed properties of v′w′/(v′
r.m.s.w

′
r.m.s.) near the

corners, as plotted in the second part of figure 17(b). Although the data presented two
peaks of approximate unity near both the concave and convex corners, the manners
in which v′w′/(v′

r.m.s.w
′
r.m.s.) approached the corners were totally different. Near the

concave corner, the v′w′/(v′
r.m.s.w

′
r.m.s.) reached its peak at d+

n = 8.2 and then rapidly
dropped to zero. However, the v′w′/(v′

r.m.s.w
′
r.m.s.) monotonically approached unity

near the convex corner.
Now our attention is switched to the concave-corner region. Following the same

trimming procedure described in § 3.1, figure 18 presents the u′
r.m.s. and w′

r.m.s. at the four
z stations at which the measurements from Cheesewright et al. (1990) and the DNS
from Gavrilakis (1992) were available to compare. Although some discrepancies were
visible, the patterns and magnitudes of the u′

r.m.s. and w′
r.m.s. distributions predicted by

the current DNS were similar to the benchmark data. These comparisons, together
with the analyses of the mean flow field near the concave corner in § 3.1, again clearly
manifest that the turbulence phenomenon is strongly flow-geometry dependent and
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Figure 18. (a) Streamwise turbulence intensity u′
r.m.s. and (b) cross-streamwise turbulence

intensity w′
r.m.s. scaled by U0 = 18.69 near the concave corner.

that the features of turbulence, including both patterns and magnitudes of the mean
flow field and Reynolds stresses, are locally and uniquely associated with the flow
configuration. The current DNSs provide a comprehensive database to analyse the
boundary layer turbulence for three configurations: a flat plate and a concave and a
convex 90◦ corner.

The near-wall and near-corner behaviours of u′
r.m.s./U and w′

r.m.s./U were examined,
since their limiting ratios approaching a wall are equal to the root mean square (r.m.s.)
wall values of the spanwise vorticity (ωz) and streamwise vorticity (ωx). Figure 19
present the u′

r.m.s./U near both the outer and inner walls along z = 1.00 and 1.98. The
measurements by Alfredsson et al. (1988) and Nishino & Kasagi (1989) suggested
a limiting value of 0.4 for u′

r.m.s./U at the wall, while the square duct DNS from
Gavrilakis (1992) approached 0.36. The current DNS gave values of 0.337 and 0.306
on the outer wall at z = 1.98 and 1.00, respectively, and 0.316 and 0.323 on the
inner wall at z = 1.98 and 1.00, respectively. The u′

r.m.s./U had zero gradients in the
near-wall regions at the three locations of (y, z) = (0.00, 1.00), (0.00, 1.98) and (1.00,
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Figure 20. Limiting near-wall behaviour of v′
r.m.s./U (a) near the outer wall and (b) near the

inner wall.

1.98), which is in agreement with the DNS from Gavrilakis (1992), except at the
location of (y, z) = (1.00, 1.00) near the inner wall and convex-corner tip at which
a small negative gradient region is found in figure 19(b) due to the convex-corner
effect. The pattern of u′

r.m.s./U near the inner wall and convex-corner tip was close to
the u′

r.m.s./U profile near a flat wall when measured by y+, but some deviations were
observed when y∗ was used as the measurement.

The limiting behaviours of v′
r.m.s./U at locations of z = 1.00 and 1.98 are plotted

in figure 20 near the outer and inner walls. Along the outer wall, the current DNS
presented a similar pattern compared to the DNS from Gavrilakis (1992), except that
the v′

r.m.s./U values were lower for flow in the square annular duct. However, the
experiment from both Niederschulte (1989) and Nishino & Kasagi (1989) showed a
sharp increase in the near-wall region that was not captured in any DNS for the square
and annular ducts. This observation suggests that the limiting values of v′

r.m.s./U in
the near-wall region are sensitive to the measurement environment (background noise
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or other disturbances). The v′
r.m.s./U near the inner wall at z = 1.98 was similar

to that along the wall bisector of the square duct, but the values were lower, as
shown in figure 20(b). However, the v′

r.m.s./U near the inner wall in the vicinity of
the convex corner had a sharp increase. Distributions at other z stations are included
in figure 20(b) to confirm that the sharp increase was due to the flow geometry
(convex-corner tip effects) rather than the numerical sensitivity.

Figure 21 presents the limiting near-wall behaviours of w′
r.m.s./U for the outer and

inner walls, respectively. The w′
r.m.s./U , from either Gavrilakis (1992) or the current

DNS, had similar pattern. An extrapolation performed near the outer wall, shown in
Figure 21(a), gave w′

r.m.s./U = 0.167 at z = 1.00 and 0.157 at z = 1.98, which were
close to the value of 0.170 reported by Gavrilakis (1992) and 0.165 from Nishino
& Kasagi (1989). Near the inner wall, as seen in figure 21(b), the w′

r.m.s./U is lower
(0.106) at z = 1.98 and higher (0.206) at z = 1.00, which is consistent with the
observation in figure 4 that the convex corner generated quite a strong streamwise
vorticity (ωx).
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In addition to the wall limiting behaviour, the corner limiting performance of the
turbulence intensities would be an interesting subject to interrogate. Figure 22 gives
the concave- and convex-corner limiting curves along the corner bisector for the
u′

r.m.s./U and v′
r.m.s./U or w′

r.m.s./U . The limiting behaviour near the convex corner
was similar to the corresponding wall limiting behaviour with the u′

r.m.s./U equal to
0.324 and the v′

r.m.s./U or w′
r.m.s./U equal to 0.162 at the convex-corner tip. However,

the limiting value of u′
r.m.s./U was significantly high (0.604) near the concave corner,

suggesting that the concave corner provided an effective damping for the mean
streamwise velocity, but not as effective for the streamwise turbulence, resulting in a
significantly high ratio.

3.2.3. Origins of turbulence-driven secondary flow

Since the streamwise vorticity is a key parameter for quantifying the intensity of
the secondary flow in a generic straight duct, the mean streamwise vorticity transport
equation for fully developed (statistically stationary) turbulence,

V
∂Ω̄x

∂y
+ W

∂Ω̄x

∂z
= ν

(
∂2Ω̄x

∂y2
+

∂2Ω̄x

∂z2

)

+

(
∂2

∂y2
− ∂2

∂z2

)
(−v′w′)

︸ ︷︷ ︸
shear stress contribution

+
∂2

∂y∂z
(v′2 − w′2)

︸ ︷︷ ︸
normal stress contribution︸ ︷︷ ︸

SFG(secondary f low generation)

, (3.2)

was applied to study the origins of TDSF in a square duct, in particular near
the concave 90◦ corner, by a number of researchers, including Brundrett & Baines
(1964), Gessner & Jones (1965) and Perkins (1970) in their earlier analytical and
experimental investigations and Madabushi & Vanka (1991), Gavrilakis (1992) and
Huser & Biringen (1993) in their LES/DNS. As an extension of these studies, the
current research applied (3.2) to the TDSF in the square annular duct to better
understand its formation mechanisms near the convex 90◦ corner and confirm the
flow similarity by comparing the SFG structures near the concave 90◦ corner to the
square duct DNS data.

The mean streamwise vorticity, calculated from the mean TDSF vector field of
figure 4, is plotted in figure 23 near the convex and concave corners. With the x-axis
pointing out of the figure’s planes defined as positive, the vorticity had one positive
peak of Ωx = 3.5 near the concave corner located at (y, z) = (0.302,0.118) denoted
by ⊕ in figure 23(a) and another positive peak of Ωx = 7.8 near the convex corner
at (y, z) = (1.031,0.854) denoted by ⊗ in figure 23(b) immediately below the corner
bisector. The vorticity peak centre is different from the vortex core that is defined as
the zero mean secondary velocity point and is used as the trimming parameter for
flow similarity in § 3.1.4. From the positive peak (⊕) near the concave corner, the
vorticity decreased as the side wall at z = 0 was approached and attained a negative
minimum of Ωx = −5.4 on the wall. The sign of Ωx changed at (y, z) = (0.302,0.053),
a distance of z+ = 10.6 away from the side wall, whereas this value was z+ = 7 in
Gavrilakis (1992). The present Ωx showed similar structures compared to the DNS
of Gavrilakis (1992). The corresponding secondary vortex generation is plotted in
figure 24(a). The global peak of the secondary flow generation (SFG) with a value of
10.38 near the concave corner occurred at the location of (y, z) = (0.240,0.067). Based
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Figure 23. Streamwise vorticity (Ωx) near the (a) concave corner and (b) convex corner.
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Figure 24. ‘Stress-induced’ SFG near the (a) concave corner and (b) convex corner.

on the flow similarity analysis in § 3.1.4 and the SFG distribution, the area affected by
the concave corner for a symmetric corner boundary layer covered a region of (y, z)
= (0–0.5, 0–0.5), which is equivalent to a circular area centred at the corner tip with
a radius of d+

n = 100. This conclusion is subject to a precaution due to the influence
of the inner side walls and the convex corner, since these boundaries will constraint
the growth of the concave corner boundary layer.

Now the attention is switched to the convex corner at which the vorticity structures
shown in figure 23(b) presented a qualitatively similar scenario compared to the
concave corner. Below the corner bisector, a large vorticity cell with a peak value of
Ωx = 7.9 was located at (y, z) = (1.031,0.854), which was equivalent to (y+, z+) =
(6.26,29.3) away from the convex corner tip. From this peak point, the vorticity
decreased as the inner side wall at z = 1.0 was approached, reaching a local minimum
peak of Ωx = −16.60 on the inner side wall. However, a global minimum of Ωx =
−19.94 was detected on the inner side wall at y+ = 1.4 away from the corner tip.
The sign of the vorticity changed at (y, z) = (1.031,0.942), a distance of 0.0585
(or equivalent z+ = 11.7) away from the inner side wall. The magnitudes of the
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Figure 26. ‘Stress-induced’ SFG near the convex corner (a) NSG and (b) SSG.

maximum and minimum vorticities were two to four times greater than those near
the concave corner. The SFG distribution near the convex corner, as formulated in
(3.2), is given in figure 24(b). Unlike the concave corner, the distributions exhibited a
highly conjugated pattern with alternating positive and negative generation structures
both across the corner bisector due to the flow symmetry properties and on one side
of the corner bisector due to the vorticity generation mechanisms. The global peak
SFG for the convex corner was located at the tip of the corner and had an extremely
high value of 2383. This further demonstrates the region affected by the convex corner
for a symmetric corner boundary layer roughly covered an area of (y, z) = (0.7–1.3,
0.7–1.3) with the corner tip located at (y, z) = (1.0,1.0), which is equivalent to an
‘L-shaped’ region around the corner with the outer boundary a distance of d+

n = 120
away from the inner side wall and corner tip, as seen in figure 24(b). Again, this
conclusion is made with a precaution that the actual affected area might be larger
due to the constraint effects of the outer side walls and the concave corner.

There have been many debates regarding roles played by the shear and normal
stress contributions in the total SFG (see Brundrett & Baines 1964, Gessner &
Jones 1965 and Perkins 1970). Most of the arguments have been based on either
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experimental or analytical results, near a concave 90◦ corner. Figure 25 provides the
normal stress generation (NSG) and shear stress generation (SSG) near the concave
corner. The two production terms were of the same order of magnitude, with NSGmax

= 23.6 and SSGmax = 20.7, but had opposite signs in the near side wall region. This
is in agreement with the observations in Gessner & Jones (1965) and Perkins (1970).
Since the net production signs in figure 24(a) followed the NSG’s signs in figure 25(a),
the NSG is concluded to be dominant in the near side wall region, whereas the SSG
governs the region away from the side wall.

The generation terms of the NSG and SSG near a convex corner exhibited
more complex structures with a salient ‘butterfly’ shape. Both the NSG and SSG
‘butterflies’ had the three distinctive zones, consisting of the antenna, side wing and
tail wing symmetrically located with respect to the corner bisector. In addition, some
substructures were identified besides the antenna and side wing near the inner side
walls. Although the sizes of the two butterflies had a slight difference when the same
color scale applied, they were, indeed, a conjugate pair in the sense that each zone
of one butterfly carried the sign opposite to that of the corresponding zone of its
counterpart. Based on the net generation (SFG) presented in figure 24(b), four major
structures, S-1, S-2, S-3 and S-4, on one side of the corner bisector were identified
according to their signs or colours, which exhibited an alternate positive and negative
arrangement between the inner side wall and the corner bisector. By patching the
areas of these structures onto the NSG and SSG in figure 26, the contribution roles
of the NSG and SSG can be qualitatively determined. Within S-1, both the NSG
and SSG contributions came from the tail-wing zone. Since the SFG in S-1 carried
a negative sign that agreed with the SSG sign, the SSG was dominant within S-1.
Since the S-2 structure covered part of the tail wing and the side wing, as well as
the entire zone of the antenna, and the sign of the SFG was positive, the NSG
and SSG alternated dominance within S-2; i.e. the NSG dominated in the tail-wing
region, followed by the SSG in the side-wing region and then the NSG in the antenna
zone. Following the same reasoning, S-3 was generated by the NGS, and S-4 was
generated by the SSG. Since the maximum generations for both the NSG and SSG
were produced within a small region almost right at the corner tip, it is deducible
that the corner tip, if infinitely sharp in a mathematical or numerical sense, is a
singularity point in terms of the SFG. However, the corner tip in reality must have
some degree of curvature or sharpness tolerance. The grid refinement, hence, must
only be conducted to a certain level until reaching the tolerance requirement.

3.2.4. Turbulence fluctuation structures

The instantaneous fluctuation fields are presented in this section to highlight some
of the distinctive features of turbulence in the square annular duct. Figure 27(a)
shows the instantaneous streamwise velocity contours in the lower-left quadrant of one
cross-section plane, upon which is superimposed the corresponding secondary velocity
vector field. The streamwise velocity contours were characterized by the mushroomlike
shapes protruding from both the inner and outer side walls. The associated secondary
velocity vectors clearly indicate that these mushroom structures were caused by the
sweeps and ejection (or bursts) events. The sweeps brought the higher momentum
from the outer turbulent region into the near-wall and near-corner regions, and the
bursts transported the low-momentum fluid back to the high-turbulence zones. This
essentially formed the mechanisms of the turbulent mixing and transport process. In
the streamwise direction, as demonstrated in figure 27(b), the flow is characterized
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Figure 27. (a) Instantaneous flow field on a cross-streamwise plane: streamwise velocity
contours and secondary velocity vectors; (b) instantaneous streamwise velocity fluctuation
field on the streamwise plane of y+ = 13.4 near the outer side wall.

by streaky structures in a near-wall plane, which is caused by the wall shear layer
effects.

4. Conclusions
DNS results for the fully developed turbulence in a square annular duct were

obtained by systematic grid refinement studies, including the preliminary LES run on
a grid of 130×66×66, an LES study using a grid of 130×130×130 in Xu & Pollard
(2001) and ultimately the current DNS with a grid of 256 × 258 × 258. The mean
flow field and turbulence statistics, including the Reynolds stresses and turbulence
energy spectra, were accumulated in the course of the flow evolution, and these data
were verified against a variety of existing turbulence databases. The current DNS
exhibited high levels of agreement with the DNS in a square duct from Gavrilakis
(1992) and Huser & Biringen (1993) and a broad range of experiments, such as those
of Niederschulte (1989), Nishino & Kasagi (1989) and Cheesewright et al. (1990), as
well as von Karman’s ‘law-of-the wall’ and Kolmogorov’s ‘−5/3 law’.
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Turbulent boundary layers of the concave and convex 90◦ corners were identified
by studying the near-corner behaviours of the mean streamwise velocity. The concave
90◦ corner dampened the mean streamwise velocity U+ near the corner, and U+ as
a function of the normalized corner bisector distance d+

n is analytically expressed

as U+(d+
n ) = d+

n (1 − e−d+
n /25) for 0 � d+

n � 20 and U+(d+
n ) = 2.5 ln d+

n + 6.5 for
30 � d+

n � 100. The convex 90◦ corner enhanced the mean streamwise velocity
near the corner, and the velocity profiles along corner bisector were curve fitted,
using an analytical formulation by introducing the enhancement function: U+(d+

n ) =

d+
n (1 + e−d+

n /5)u
∗/uτ for 0 � d+

n � 10 and U+(d+
n ) = 2.5 ln(d+

n ) + 8.0 for 20 � d+
n �

100. These formulations reveal that the boundary layer of concave 90◦ corner is
characterized by a zero wall shear stress, and the non-dimensional wall shear stress
for the convex 90◦ corner is at 3.261 based on the current grid resolution.

By comparing the flow patterns near the concave 90◦ corner in the present study
with the DNS data from Gavrilakis (1992) and the experiment from Cheesewright et
al. (1990), a flow similarity rule was discovered, and the location of the corner-vortex
core was identified as the parameter for trimming the flows so that the flow fields
were quantitatively comparable. The flow similarity near a concave 90◦ corner was
validated by comparing the mean streamwise and secondary velocities as well as
the turbulence intensities of u′

r.m.s. and w′
r.m.s.. The location of the vortex core for

the convex corner was provided for future checks of flow similarity in convex 90◦

corner turbulence under symmetric mean flow conditions. Based on the ‘law-of-the-
corner’ formulations and the flow similarity properties, we recommend that the ‘corner
functions’, supplementing the ‘wall function’, be developed, in either an analytical or
a tabular form, to improve the accuracy of RANS simulations.

The limiting behaviours of the turbulence intensities near the wall and corners were
studied and compared with the existing experiment and DNS. The limiting behaviours
of these intensities near the convex corner were found quite similar to that near a flat
plate, whereas the limiting behaviours near the concave corner differed. A rescaling
study of the turbulence shear stresses concluded that the streamwise shear stress
u′v′ and the cross-streamwise shear stress v′w′ must be rescaled by u′

r.m.s.v
′
r.m.s.and

v′
r.m.s.w

′
r.m.s., respectively, so that their distributions and magnitudes become more

universal and normalized. The current investigation demonstrated the importance of
these scaling laws in the vicinity of the corner regions, and the turbulence scaling
laws at higher Reynolds numbers are the points of interest that warrant a further
investigation in future.

A TES analysis was conducted based on the DNS data in the square annular
duct. The anisotropy properties of the turbulence motions at different scales led to
re-evaluation of the validity of the conventional turbulence eddy viscosity concept. To
address the anisotropy motions in turbulence correctly, a tensor form of turbulence
eddy viscosity is recommended in the future development of RANS turbulence closure
models and LES subgrid scale models.

The TDSF in the square annular duct was predicted as a chain of strong, counter-
rotating vortex pairs symmetrically located around the convex 90◦ corner and a weak
counter-rotating vortex pair symmetrically located around the concave 90◦ corner.
By interrogating the origin of these secondary flows, prominent butterfly structures
were identified for the normal and shear stress contributions near the convex corner.
The normal and shear stress contributions were conjugate to each other, and they
alternated dominance in different zones near the convex corner.

The current investigation revealed in-depth knowledge of the corner turbulence
physics and provided a solid validation for the N-S equation solution technology
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developed in Xu et al. (2005). This simulation technique opens the door to use
LES/DNS to directly attack the turbulence in generic Cartesian geometries, such
as rectangular ducts and rectangular annular channels. The extension of this
technology to more general complex geometry turbulent flows will be a major task in
future.

The research originated from the PhD research of Dr Xu, supervised by Professor
Andrew Pollard at Queen’s University of Canada. The author would like to thank
Dr Gavrilakis, Dr Huser and Dr Biringen for providing their DNS results to validate
the current investigation. Thanks are also due to Dr Stuart McIlwain, Dr Norman
Ball and Dr Steve Zan at the Institute for Aerospace Research (IAR), National
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